Robotik

  • Massiv Kollaborative Erfassung von dynamischen Umgebungen und ihre Abbildung in digitalen Karten
    Selbstfahrende Autos und autonome Roboter benötigen hochgenaue Modelle ihrer Umgebung, um über lange Zeit sicher agieren zu können. Doch natürliche Umgebungen wie Straßenzüge enthalten dynamische Objekte und verändern sich mit der Zeit: Gebäude werden neu gebaut, Bäume gepflanzt und Autos unterschiedlich geparkt Da solche Umgebungen nicht permanent erfasst werden können und es immer eine erste Fahrt in einer veränderten Umgebung geben wird, wird ein Umgebungsmodell benötigt, welches mögliche Veränderungen berücksichtigt.
    Leitung: Brenner
    Team: Schachtschneider, Brenner
    Jahr: 2017
    Förderung: DFG-Graduiertenkolleg i.c.sens
    Laufzeit: 2016-2021 (erste Phase)
  • Erstellung dynamischer Karten durch kooperative Fahrzeuge
    Bereits heute sind viele Fahrzeuge mit Sensoren versehen, wodurch eine sehr große Menge sensorieller Daten über den Straßenraum zur Verfügung steht. Bisher werden diese Sensordaten nur individuell von jedem Fahrzeug ausgewertet. Beispielsweise werten Assistenzsysteme die Lage aus und leiten daraus ihr unmittelbares Verhalten (z.B. Notbremsung) ab. Das abgeleitete Wissen steht jedoch anderen Verkehrsteilnehmern nicht zur Verfügung. Dies hat den Nachteil, dass ein Aufbau von Wissen, beispielsweise über gefahrenträchtige Orte, nicht stattfindet.
    Team: Busch, Brenner
    Jahr: 2017
    Förderung: Deutsche Forschungsgemeinschaft (DFG)