Golze - Abschlussarbeiten

Masterarbeiten (abgeschlossen)

  • Identifikation und Analyse von Bewegungsmustern in Trajektorien
    In dieser Arbeit werden Bewegungsmuster in Trajektoriendatensätzen hinsichtlich der jeweiligen besuchten Orte einer Trajektorie identifiziert. Dazu werden den Aufenthaltspunkten weitere semantische Informationen abhängig von der Position, der Tageszeit und der Aufenthaltsdauer zugewiesen; die Zuweisung von semantischen Informationen hinsichtlich der Position erfolgt mit Hilfe von OpenStreetMap-Daten. Ein weiterer Schwerpunkt lag auf der Identifikation von zusammengehörigen Trajektorienteilstücken, da der gegebene Datensatz als Folge des Datenschutzes anonymisiert wurde; dazu wurde eine Koordinatenprädiktion für alle Trajektorien-Endpunkte durchgeführt, um mit Hilfe einer Umkreissuche und der zeitlichen Nähe einen geeigneten weiterführenden Anfangspunkt einer anderen Trajektorie zu identifizieren. Die auf Basis der Aufenthaltspunkte durchgeführte Erkennung von wiederkehrenden Bewegungsmustern erzeugt bei den verwendeten Datensätzen keine aussagekräftigen Muster, die im gesamten Datensatz in mehreren Trajektorien detektiert werden; allerdings werden für einzelne Trajektorien aussagekräftige, wiederkehrende Muster gefunden. Ein steigender Detailgrad bei der Zuweisung von Kategorien hinsichtlich des Aufenthaltsortes resultiert in weniger wiederkehrenden Mustern, die hingegen eine höhere Aussagekraft angesichts der Interpretation des Bewegungsverhaltens einer beobachteten Person zulassen.
    Leitung: Golze, Feuerhake, Wage, Sester
    Team: Friderike Fischer
    Jahr: 2022
  • Entwicklung einer modularen Sensorplattform zur mobilen Erfassung von Fahrzeugbegegnungen
    Das Fahrradfahren im gemeinsamen Verkehrsraum mit Kraftfahrzeugen bereitet vielen Radfahrer*innen Unbehagen. Das Meiden stark befahrener Straßen ist nur mit guter Ortskenntnis möglich, da zur Häufigkeit der Begegnungen mit Kraftfahrzeugen auf den meisten Straßen keine Daten vorliegen. Die Erfassung eines Datensatzes, der Smartphone-Sensordaten über Fahrzeugbegegnungen sammelt, könnte die Grundlage für einen Smartphone-basierten Fahrzeugdetektor bilden. Magnetometer- und Barometer-Messwerte werden als Indikatoren für vorbeifahrende Fahrzeuge verwendet. In dieser Arbeit wird zunächst eine Sensorplattform konstruiert, die zur Erhebung von Smartphone- und anderen Sensordaten im Fahrbetrieb dient. Das System ist so ausgelegt, dass es auch in Zukunft mit anderen Sensorkonfigurationen genutzt werden kann. Daraufhin wird eine Methodik vorgestellt, die auf Basis der Daten einer Kamera und eines Abstandssensors an der Sensorplattform einen Datensatz von Fahrzeugbegegnungen erzeugt. Dieser enthält zu den gefahrenen Trajektorien alle wichtigen Sensordaten eines handelsüblichen Smartphones inklusive der Zeitpunkte von Fahrzeugbegegnungen. Ab- schließend wird auf Basis des Datensatzes ein dreiklassiger Klassifikator trainiert und evaluiert. Dabei wird untersucht, welcher Ansatz einen generalisierbaren Klassifikator liefern kann. Für den Klassifikator werden mehrere auf dem Random Forest basierende Ansätze untersucht. Dabei werden Aufbau und Parameter einer Sliding-Window-Funktion zur Feature-Erzeugung angepasst.
    Leitung: Wage, Feuerhake, Golze, Sester
    Team: Tim Schimansky
    Jahr: 2022
  • Nutzungsdatengetriebene Analyse des Potentials von Mikromobilitätsdiensten
    Der geteilten Mobilität wird in der öffentlichen Debatte um die Verkehrswende häufig eine entscheidende Rolle zugeordnet. Darunter fallen auch die sogenannten Mikromobilitätsdienste. Das Ziel dieser Masterarbeit ist es, das Potential von Mikromobilitätsdiensten für die Verkehrswende im Hinblick auf die Intentionen der Nutzer, auf zeitliche Variationen, sowie auf Vorteile gegenüber anderen Transportmitteln datenbasiert zu bewerten. Dafür wird eine Fallstudie anhand von Mobilitätsdaten der Bikesharing-Fahrräder und Elektrotretroller zweier Anbieter in Hannover durchgeführt.
    Leitung: Wage, Feuerhake, Golze
    Team: Finn Boie
    Jahr: 2022
  • Visual communication of bicycle routes using cartographic symbolization
    The present work focuses on the visualization of specially selected features that occur on a bicycle route and that influence comfort while driving. Routes in an urban environment, which are represented by edges of a graph, are mainly used for visualization. These edges of a route are individually mapped with a visual variable each so that the underlying feature appears in a map display. The variants created in this way for one of five characteristics are tested in a user study for efficiency, effectiveness, attractiveness and suitability and compared with more information-rich visualizations. The result of the evaluation reveals that color representations as well as representations with symbols or signatures are perceived as the most ideal.
    Leitung: Golze, Wage, Fuest, Feuerhake, Sester
    Team: Sharon Dornbusch
    Jahr: 2021
  • Identification of on-road and separate bicycle lanes
    Cyclists are the most vulnerable participants in the road traffic in these days. Therefore, it is important to protect them, for example, by physically separated bicycle lanes. Continuous position tracking can yield a lot of data, which can help to understand how moving objects behave. This information could be used, e.g. in routing applications aiming to find a more secure route to the users destination. In this thesis the goal is to explore the idea of the identification of bicycle lane types of (OpenStreetMap) road segments using GPS trajectories of bicycles and motorized vehicles. This goal is archieved by applying clustering to the pool of trajectory data. Different distance measures are explored to distinguish between car and bicycle clusters. Three different bicycle lane types are identified within this thesis in the region of Hannover. Each of them can be classified with at least 70 percent accuracy. There are multiple reasons for inaccuracies like GPS positioning errors and the fact that not all cyclists drive on the respective bicycle lanes but on the car lanes.
    Leitung: Golze, Feuerhake, Prof. Rosenhahn, Prof. Sester
    Team: Boying Liu
    Jahr: 2021
  • Mustererkennung des Bewegungsverhaltens für die Kreuzungs-Klassifizierung unter Verwendung von GPS-Trace Daten
    Das Ziel dieser Arbeit ist es, verschiedene Arten von Regulatortypen von Verkehrsknotenpunkten auf der Basis von GPS-Trace Daten zu klassifizieren. Um dieses Ziel zu erreichen, wird eine Vielzahl von Merkmalen zur Beschreibung des Fahrverhaltens an Kreuzungen berechnet. Diese werden aus den gemessenen Einheiten der GPS-Trace Daten abgeleitet, aus denen sich die Bewegungs-Trajektorie einer Person zusammensetzt.
    Leitung: Zourlidou
    Team: Jens Golze
    Jahr: 2019

Offene Masterarbeiten

  • Investigation of the Spatio-Temporal Impact of Traffic Accidents
    Traffic accidents play an important role in our lives in terms of safety and security, especially for people. Everyone is affected by traffic accidents either directly (involved) or indirectly (consequences). Consequences such as traffic jams or road (lane) closures not only disrupt delivery and rush hour traffic, but can also lead to additional accidents. In addition, different types of traffic accidents can have different consequences. For example, an impact could be found in a reduction of the average travel speed on the road or on nearby roads in the time after an accident has occurred. The goal of this thesis is to investigate the impact of traffic accidents based on vehicle trajectories. Therefore, accident and trajectory data need to be linked and the spatial and temporal impact needs to be analyzed.
    Leitung: Golze
    Jahr: 2023