Thiemann - Forschungsprojekte

Big Data und Machine Learning

  • Gauss-Zentrum
    Ziel des Projekts ist die Entwicklung von Methoden zur automatisierten Klassifizierung, Speicherung und Analyse von Geodaten unterschiedlichen Alters und unterschiedlicher Qualität. Von großem Interesse ist hierbei die Analyse von Zeitreihen zur Gewinnung von Information über Veränderungen der Landschaft, welche für weiterführende Untersuchungen zu verschiedenen räumlichen Prozessen die Grundlage bilden, zum Beispiel im Kontext von Fragen der Entwicklung von besiedelten Flächen oder des Umweltschutzes. Geodaten unterschiedlicher Herkunft und unterschiedlichen Alters weisen in der Regel sehr heterogene Strukturen auf, sodass eine Analyse in Zeitreihen mittels herkömmlicher Methoden nicht möglich ist. In dem Projekt werden die Voraussetzungen geschaffen, eine universelle Zeitreihenanalyse auf historischen, räumlichen Daten durchzuführen, indem sie als semantisch strukturierte Objekte in einer Datenbank abgelegt werden. Folgende Forschungsleitfragen sollen in diesem Zusammenhang beantwortet werden: - Wie können historische Karten, aber auch historische Luftaufnahmen zusammen mit aktuellen räumlichen Daten gespeichert und Veränderungen über die Zeit analysiert werden? - Welche (Geo-)Informationen lassen sich aus historischen Kartenwerken oder historischen Luftbildern verlässlich ableiten? - Kann dies in einer größtenteils automatisierten Verfahrensweise erfolgen (KI-Unterstützung, speziell Deep Learning) und auf weitere Kartenwerke übertragen werden? - Welche Struktur muss eine Datenbank aufweisen, um Daten aus verschiedenen Quellen aufzunehmen und in Einklang zu bringen? - Können aus den Ergebnissen der Zeitreihenanalyse für ausgewählte Prozesse die wesentlichen Einflussfaktoren identifiziert werden? Der Fokus der Untersuchungen liegt auf den Möglichkeiten einer harmonisierten Analyse von historischen und modernen Daten. Weitere Informationen zum Projekt finden sich hier: https://www.gausszentrum.uni-hannover.de
    Leitung: Sester, Monika; Otto, Philipp
    Team: Fangueng, Mireille; Thiemann, Frank; Yuan, Yunshuang
    Jahr: 2023
    Förderung: BKG - Bundesamt für Kartographie und Geodäsie
    Laufzeit: 2023-2025
  • Objekterkennung in ALS-Daten mittels Deep Learning
    In Zusammenarbeit mit dem Niedersächsischen Landesamt für Denkmalpflege entwickeln wir ein Verfahren zur automatischen Erkennung archäologischer Objekte in luftgetragenen Laserscandaten. Die Art der Objekte, die entdeckt werden sollen, ist hauptsächlich für Archäologen von Interesse, wie z. B. Haufen, Schächte, Holzkohlepfähle, Gruben, Schubkarren, Bombenkrater, Hohlwege usw. Es kann sich um spitze, lineare oder flächige Objekte handeln. Zu diesem Zweck verwenden wir tiefe Lerntechniken; nämlich Faltungsneuronale Netze (CNNs) zum Klassifizieren von Höhenbildern aus der Region von Interesse. Eine Kombination mehrerer (in den meisten Fällen 5) CNN-Klassifikatoren wird dann verwendet, um interessierende Objekte in einem aus der interessierenden Region erfassten digitalen Geländemodell zu erkennen und zu lokalisieren.
    Leitung: Sester, Monika
    Team: Kazimi, Bashir; Thiemann, Frank
    Jahr: 2018
    Förderung: MWK Pro*Niedersachsen
    Laufzeit: 2018-2020

Datenintegration

  • Beseitigung von Geometrischen Konflikten zwischen Kataster- und Topographischen Datensätzen
    Werden Datensätze unabhängig voneinander erhoben, gewartet und fortgeführt, können Konflikte in Geometrie und Semantik entstehen, selbst wenn dieselben Objekte in beiden Datensätzen beschrieben werden. Besonders aus finanzieller Sicht ist es wünschenswert diese zu harmonisieren, um den Aufwand für Erhebung und Fortführung zu reduzieren.
    Team: Thiemann, Schulze, Sester
    Jahr: 2015
    Förderung: Forschungs- und Entwicklungsvorhaben zwischen den Landesvermessungsämtern Niedersachen, Schleswig-Holstein und Mecklenburg-Vorpommern
    Laufzeit: 2015-2017

Generalisierung

  • PUSH -- Automatische Kartographische Verdrängung mittels Optimierung
    Das Programm PUSH ermöglicht die automatische Verdrängung von Geoobjekten aller Art. Die jeweiligen Objektcharakteristika, die die Verdrängung beeinflussen, lassen sich sehr flexibel parametrisieren. Die Ergebnisse erlauben eine automatische Qualitätskontrolle. Das Programm ist in der Lage, auch größere Datenbestände (z.B. Kartenblatt topographische Karte 1:50.000) zu bearbeiten.
    Team: Sester, Thiemann
    Jahr: 2021
    Laufzeit: laufend
  • Generalisierung mittels Deep Learning
    Am ikg wird die Möglichkeit erforscht, das Problem der Generalisierung mittels Deep Learning zu lösen. In einem ersten Ansatz wurde ein Neuronales Netz zur Erzeugung von Gebäudegeneralisierungen in drei Maßstäben genutzt.
    Leitung: Sester
    Team: Sester, Feng, Thiemann
    Jahr: 2018
    Förderung: Institutsmittel
  • TASH
    Das Institut für Kartographie und Geoinformatik (IKG) hat seit 1970 einen Forschungs- und Entwicklungsschwerpunkt auf dem Gebiet der Erfassung, Auswertung und Darstellung topographischer Daten. Als das für Forschung und Praxis wichtigstes Ergebnis kann das Topographische Auswerte-System Hannover (TASH) angesehen werden. Das Programmsystem wird weiter entwickelt und gepflegt und dabei jeweils unterstützten Betriebssystemen (z. Zt. Windows NT 4 und Windows 2000) angepasst.
    Team: Sester, Thiemann
    Jahr: 2017
  • CHANGE
    Das Programmsystem CHANGE generalisiert Gebäude. Objektartengetrennt werden die Objekte mit der Generalisierungssoftware vektororientiert verarbeitet. Die Steuerung des Generalisierungsgrades erfolgt durch die Parameter Eingangs- und Folgemaßstab sowie graphische Mindestgrößen. Die standardmäßig vorgegebenen graphischen Mindestgrößen entsprechen den in der Literatur beschriebenen Größen. Der Programm-Ablauf erfolgt im Batchbetrieb und ist unabhängig von GIS- und graphischen System-Plattformen. Anwendungsbereiche sind topographische Kartographie und Geo-Informationssysteme (GIS).
    Team: Sester, Thiemann
    Jahr: 2017
  • TYPIFY
    Mit Typifizierung wird der Vorgang bezeichnet, aus einer gegebenen Objektmenge einen Teil zu reduzieren, dabei aber die räumliche Verteilung der Situation beizubehalten. Beispielsweise können in einem kleinen Maßstab nicht mehr alle Gebäude dargestellt werden - sie sind also sinnvoll zu reduzieren. Diese Reduktion kann jedoch nicht zufällig erfolgen, sondern muss die räumliche Verteilung der Objekte berücksichtigen. Hierfür wurde ein Verfahren entwickelt, welches auf der Basis von Kohonen Merkmalskarten arbeitet.
    Team: Sester, Thiemann
    Jahr: 2017

Laserscanning

  • Objekterkennung in ALS-Daten mittels Deep Learning
    In Zusammenarbeit mit dem Niedersächsischen Landesamt für Denkmalpflege entwickeln wir ein Verfahren zur automatischen Erkennung archäologischer Objekte in luftgetragenen Laserscandaten. Die Art der Objekte, die entdeckt werden sollen, ist hauptsächlich für Archäologen von Interesse, wie z. B. Haufen, Schächte, Holzkohlepfähle, Gruben, Schubkarren, Bombenkrater, Hohlwege usw. Es kann sich um spitze, lineare oder flächige Objekte handeln. Zu diesem Zweck verwenden wir tiefe Lerntechniken; nämlich Faltungsneuronale Netze (CNNs) zum Klassifizieren von Höhenbildern aus der Region von Interesse. Eine Kombination mehrerer (in den meisten Fällen 5) CNN-Klassifikatoren wird dann verwendet, um interessierende Objekte in einem aus der interessierenden Region erfassten digitalen Geländemodell zu erkennen und zu lokalisieren.
    Leitung: Sester, Monika
    Team: Kazimi, Bashir; Thiemann, Frank
    Jahr: 2018
    Förderung: MWK Pro*Niedersachsen
    Laufzeit: 2018-2020

3D-Visualisierung

  • Generalisierung mittels Deep Learning
    Am ikg wird die Möglichkeit erforscht, das Problem der Generalisierung mittels Deep Learning zu lösen. In einem ersten Ansatz wurde ein Neuronales Netz zur Erzeugung von Gebäudegeneralisierungen in drei Maßstäben genutzt.
    Leitung: Sester
    Team: Sester, Feng, Thiemann
    Jahr: 2018
    Förderung: Institutsmittel

Projektseminar

  • Projektseminar 2011/2012: ATEAM
    Im Rahmen des Projektseminars im Jahr 2011/2012 des Masterstudiengangs Geodäsie und Geoinformatik an der Leibniz Universität Hannover wird am Institut für Kartographie und Geoinformatik (IKG) das Programm “Ad-hoc Topographical Environment Acquisition and Modeling" (ATEAM) konzipiert und entwickelt werden. Das Ziel dieses Programms ist eine automatisierte Verarbeitung der Daten einer topographischen Geländeaufnahme, die dem Benutzer eine visuelle Unterstützung in Form eines Höhenmodells geben soll.
    Leitung: Schulze, Thiemann, Dahinden, Eggert
    Team: Frauke Bittner, Paul Czioska, Veronika Kraft, Alexander Schlichting, Michael Thies
    Jahr: 2011

Bachelorseminar

  • GPS-Track-Visualisierer
    In Zeiten der immer günstiger werdenden GPS-Handgeräte und –Uhren nutzen immer mehr Sportler verschiedenster Disziplinen (Wandern, Segeln, Laufen, Skaten, Fahrrad- und Motorradfahren, Gleitschirmfliegen, Kanu, Bergsteigen etc.) die Möglichkeit, mithilfe des frei verfügbaren GPS-Dienstes ihren zurückgelegten Weg aufzuzeichnen. Die so gewonnenen Tracks können nicht nur in Verbindung mit Luftbildern oder Kartenmaterial zum Nachvollziehen und Dokumentieren der Tour verwendet werden, sondern bieten darüber hinaus vielseitige Möglichkeiten der Analyse. Sportler können sich Größen, wie Geschwindigkeit, Steigung, Höhe, etc. auf Basis der aufgezeichneten Daten berechnen und anzeigen lassen. Dadurch bieten sich GPS-Tracks als modernes Werkzeug zur Trainings- und Leistungsanalyse an. noch ein text
    Leitung: Anders, Elias, Thiemann
    Jahr: 2017